Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Chemosphere ; 356: 141940, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588894

RESUMO

Dissolved black carbon (DBC) is the ubiquitous component of dissolved organic matter pools with the high reactivity for disinfection byproducts formation. However, it is unknown that the influence of molecular weight (MW) of natural organic matter (NOM) on the DBC removal from potable water sources. Therefore, it was studied that the DBC removal by coagulation in the presence of the NOM with various molecular weights. The DBC removal was promoted due to the presence of NOM and the promotion degree decreased with decreasing MW of NOM. Furthermore, the removal ratio of humic-like component increased as the MW of NOM decreased, suggesting that the competition between DBC and NOM increased with decreasing MW. The functional groups after coagulation were the same with that before coagulation as the MW of NOM varied, suggesting that the molecular structure was not the key factor of influencing the DBC removal. This study will give the deep insight into the prediction of the DBC removal ratio by coagulation based on the MW of NOM in water sources.

2.
Water Res ; 256: 121539, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38583335

RESUMO

Inorganic coagulants such as poly aluminum ferric chloride (Al/Fe) are applied conventionally to sewage sludge dewatering and can be retained in the sludge cake, causing its conductivity to increase and generate secondary pollution. To reduce these disadvantages, there is a need to develop alternative, more sustainable chemicals as substitutes for conventional inorganic coagulants. In the present investigation, the application of a polymeric chitosan quaternary ammonium salt (CQAS) is explored as a complete, or partial, replacement for Al/Fe in the context of sludge dewatering processes. Laboratory experiments using digested sewage sludge showed that CQAS could effectively substitute for over 80 % of the Al/Fe inorganic coagulant in the sludge dewatering process. This substitution resulted in a reduction of sludge cake conductivity by more than 50 %. Simulation of sludge dewatering curves and imaging of the sludge surface indicated that the addition of CQAS led to an increase in nanosized pores, and a decrease in the specific resistance of the sludge filter cake as the dosage of Al/Fe decreased to around 30 %. The variations of fluorescence emission, quantum yield and carboxylic and amino groups, suggested that the chelating of Al/Fe decreased due to the bridging effects of CQAS. The CQAS had different flocculation bridging effects on various EPS fractions, which varied the amount of protein chelated with Al/Fe in each fraction. This study provides new information about the benefits of replacing conventional inorganic coagulants with natural organic polymers for sewage sludge dewatering, in terms of reduced sludge cake conductivity and greater dry solids content.

3.
Environ Sci Technol ; 58(13): 5899-5910, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502922

RESUMO

The established benefits of ozone on microbial pathogen inactivation, natural organic matter degradation, and inorganic/organic contaminant oxidation have favored its application in drinking water treatment. However, viable bacteria are still present after the ozonation of raw water, bringing a potential risk to membrane filtration systems in terms of biofilm accumulation and fouling. In this study, we shed light on the role of the specific ozone dose (0.5 mg-O3/mg-C) in biofilm accumulation during long-term membrane ultrafiltration. Results demonstrated that ozonation transformed the molecular structure of influent dissolved organic matter (DOM), producing fractions that were highly bioavailable at a specific ozone dose of 0.5, which was inferred to be a turning point. With the increase of the specific ozone dose, the biofilm microbial consortium was substantially shifted, demonstrating a decrease in richness and diversity. Unexpectedly, the opportunistic pathogen Legionella was stimulated and occurred in approximately 40% relative abundance at the higher specific ozone dose of 1. Accordingly, the membrane filtration system with a specific ozone dose of 0.5 presented a lower biofilm thickness, a weaker fluorescence intensity, smaller concentrations of polysaccharides and proteins, and a lower Raman activity, leading to a lower hydraulic resistance, compared to that with a specific ozone dose of 1. Our findings highlight the interaction mechanism between molecular-level DOM composition, biofilm microbial consortium, and membrane filtration performance, which provides an in-depth understanding of the impact of ozonation on biofilm accumulation.


Assuntos
Ozônio , Purificação da Água , Membranas Artificiais , Ultrafiltração , Biofilmes
4.
Water Res ; 254: 121352, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401286

RESUMO

Coagulation efficiency is heavily contingent upon a profound comprehension of the underlying mechanisms, facilitated by the evolution of coagulation theory. However, the role of anions, prevalent components in raw and wastewaters, has been relatively overlooked in this context. To address this gap, this study has investigated the impact of three common anions (i.e., chloride, sulfate, and phosphate) on Al-based coagulation. The results have shown that the influence of anions on coagulation depends predominantly on their ability to compete with hydroxyl groups throughout the entire coagulation process, encompassing hydrolysis, aggregation, and the growth of large flocs. Moreover, this competition is subject to the dual influence of both anion concentration and hydroxyl concentration (i.e., pH). The results have revealed the intricate interplay between anions and coagulants, their impact on floc structure, and their importance in optimizing coagulation efficiency and ensuring the production of high-quality water.


Assuntos
Sulfatos , Purificação da Água , Floculação , Ânions , Águas Residuárias , Cátions , Purificação da Água/métodos
5.
Environ Sci Technol ; 58(2): 1164-1176, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164759

RESUMO

Terrestrial dissolved organic matter (DOM) is critical to global carbon and nutrient cycling, climate change, and human health. However, how the spatial and compositional differences of soil DOM affect its dynamics and fate in water during the carbon cycle is largely unclear. Herein, the biodegradation of DOM from 14 spatially distributed grassland soils in China with diverse organic composition was investigated by 165 days of incubation experiments. The results showed that although the high humified fraction (high-HS) regions were featured by high humic-like fractions of 4-25 kDa molecular weight, especially the abundant condensed aromatics and tannins, they unexpectedly displayed greater DOM degradation during 45-165 days. In contrast, the unique proteinaceous and 25-100 kDa fractions enriched in the low humified fraction (low-HS) regions were drastically depleted and improved the decay of bulk DOM but only during 0-45 days. Together, DOM from the high-HS regions would cause lower CO2 outgassing to the atmosphere but higher organic loads for drinking water production in the short term than that from the low-HS regions. However, this would be reversed for the two regions during the long-term transformation processes. These findings highlight the importance of spatial and temporal variability of DOM biogeochemistry to mitigate the negative impacts of grassland soil DOM on climate, waters, and humans.


Assuntos
Matéria Orgânica Dissolvida , Solo , Humanos , Pradaria , Carbono , Água , China
6.
Water Res ; 252: 121193, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290239

RESUMO

Biofiltration is an environmentally 'green' technology that is compatible with the recently proposed sustainable development goals, and which has an increasingly important future in the field of water treatment. Here, we explored the impacts of bioelectrochemical integration on a bench-scale slow rate biofiltration system regarding its performance in reclaimed water treatment. Results showed that the short-term (<3 months) integration improved the removal of natural organic matter (NOM) (approximately 8.8%). After long-term (5 months and thereafter) integration, the cathodic charge transfer resistance was found to have a significant reduction from 2662 to 1350 Ω. Meanwhile, bioelectrochemical autotrophic sulfate (SO42-) reduction (over 27.6% reduction) through the syntrophic metabolism between hydrogen oxidation strains (genus Hydrogenophaga) and sulfate-reducing microbes (genera Dethiobacter, Desulfovibrio, and Desulfomicrobium) at the cathodic region was observed. More significantly, the microbial-derived chromophoric humic substances were found to act as electron shuttles at the cathodic region, which might facilitate the process of bioelectrochemical SO42- reduction. Overall, this study provided valuable insights into the potential application of bioelectrochemical-integrated biofilter for simultaneous reduction of NOM and SO42- treating reclaimed water.


Assuntos
Sulfatos , Purificação da Água , Oxirredução , Processos Autotróficos , Purificação da Água/métodos , Substâncias Húmicas/análise
7.
J Environ Manage ; 351: 119719, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043306

RESUMO

Landfill leachate properties contain important information and can be a unique indicator for the chemical and biochemical activities in landfills. In the recent decade, more landfills are experiencing elevated temperature, causing an imbalance in the decomposition of solid waste and affecting the properties of the landfill leachate. This study analyzes the properties of leachate from two landfills that were experiencing elevated temperature (ETLFs), samples were collected from both elevated temperature impacted and non-impacted areas in each landfill. The accumulation of volatile fatty acids (VFA) in leachates from elevated temperature impacted areas of both landfill sites revealed that methanogenesis was inhibited by the elevated temperature, which was further confirmed by the more acidic pH, higher H/C elemental ratio, and lower degree of aromaticity of the elevated temperature impacted leachates. Also, carbohydrates depletion indicated possible enhancement of hydrolysis and acidogenesis by elevated temperature, which was supported by compositional comparison of isolated acidic species by negative-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) at 21 T derived from both elevated temperature impacted and non-impacted areas in the same landfill site. Furthermore, leachate organics fractionation showed that leachates not impacted by elevated temperature contain less hydrophilic fraction and more humic fraction than elevated temperature-impacted leachates for both ETLFs.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/química , Temperatura , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Hidrogênio/análise
8.
Water Res ; 247: 120840, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950954

RESUMO

The presence of manganese(II) in drinking water sources poses a significant treatment difficulty for water utilities, thus necessitating the development of effective removal strategies. Treatment by Fe(VI), a combined oxidant and coagulant, has been identified as a potential green solution; however, its effectiveness is hampered by natural organic matter (NOM), and this underlying mechanism is not fully understood. Here, we investigated the inhibitory effect of three different types of NOM, representing terrestrial, aquatic, and microbial origins, on Mn(II) removal and floc growth during Fe(VI) coagulation. Results revealed that Fe(VI) coagulation effectively removes Mn(II), but NOM could inhibit its effectiveness by competing in oxidation reactions, forming NOM-Fe complexes, and altering floc aggregation. Humic acid was found to exhibit the strongest inhibition due to its unsaturated heterocyclic species that strongly bond to flocs and react with Fe(VI). For the first time, this study has presented a comprehensive elucidation of the atomic-level structure of Fe(VI) hydrolysis products by employing Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS). Results demonstrated that NOM strengthened single-corner and double-corner coordination between FeO6 octahedrons that were consumed by Mn(II), resulting in an increased contribution of γ-FeOOH in the core-shell structure (γ-FeOOH shell and γ-F2O3 core), thereby inhibiting coagulation effects. Furthermore, NOM impeded the formation of stable manganite, resulting in more low-valence Mn(III) being incorporated in the form of an unstable intermediate. These findings provide a deeper understanding of the complex interplay between Fe coagulants, heavy metal pollution, and NOM in water treatment and offer insight into the limitations of Fe(VI) in practical applications.


Assuntos
Manganês , Purificação da Água , Oxirredução , Manganês/química , Purificação da Água/métodos
9.
ACS Appl Mater Interfaces ; 15(43): 50116-50125, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856676

RESUMO

Construction of the desired morphology and nanointerface to expose the active sites and modulate the electronic structure offers an effective approach to boosting urea splitting for energy-saving hydrogen generation. Herein, we fabricate a Ni/WO3 Mott-Schottky heterojunction electrocatalyst with a hedgehog-like structure supported on Ni foam toward alkaline urea splitting. Different Ni/WO3 morphologies, such as microspheres, hedgehog-like structures, octahedrons, and cubes, were obtained when various ratios of Ni/W feeds were used. The Mott-Schottky nanointerfaces between Ni and WO3 domains are visually confirmed by high-resolution transmission electron microscopy images, which also accelerated the charge transfer rate. Benefiting from the high electrochemically active surface area and enhanced charge transferability, the optimal Ni/WO3 electrode exhibits outstanding catalytic activity toward hydrogen generation with a low overpotential of 163 mV at 100 mA cm-2 in alkaline solution and reduced cell voltage of 1.67 V when coupled with urea oxidation reaction. Theoretical calculations reveal that the Ni sites in Ni/WO3 optimize the H adsorption energy (ΔGH*) with the |ΔGH*| value of 0.097 eV, much lower than that of Ni (0.35 eV) and WO3 (0.235 eV). This work demonstrates important guidance in designing an efficient electrocatalyst for urea splitting.

10.
Environ Sci Technol ; 57(33): 12489-12500, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37551789

RESUMO

In situ Fe(III) coprecipitation from Fe2+ oxidation is a widespread phenomenon in natural environments and water treatment processes. Studies have shown the superiority of in situ Fe(III) (formed by in situ oxidation of a Fe(II) coagulant) over ex situ Fe(III) (using a Fe(III) coagulant directly) in coagulation, but the reasons remain unclear due to the uncertain nature of amorphous structures. Here, we utilized an in situ Fe(III) coagulation process, oxidizing the Fe(II) coagulant by potassium permanganate (KMnO4), to treat phosphate-containing surface water and analyzed differences between in situ and ex situ Fe(III) coagulation in phosphate removal, dissolved organic matter (DOM) removal, and floc growth. Compared to ex situ Fe(III), flocs formed by the natural oxidizing Fe2+ coagulant exhibited more effective phosphate removal. Furthermore, in situ Fe(III) formed through accelerated oxidation by KMnO4 demonstrated improved flocculation behavior and enhanced removal of specific types of DOM by forming a more stable structure while still maintaining effective phosphate removal. Fe K-edge extended X-ray absorption fine structure spectra (EXAFS) of the flocs explained their differences. A short-range ordered strengite-like structure (corner-linked PO4 tetrahedra to FeO6 octahedra) was the key to more effective phosphorus removal of in situ Fe(III) than ex situ Fe(III) and was well preserved when KMnO4 accelerated in situ Fe(III) formation. Conversely, KMnO4 significantly inhibited the edge and corner coordination between FeO6 octahedra and altered the floc-chain-forming behavior by accelerating hydrolysis, resulting in a more dispersed monomeric structure than ex situ Fe(III). This research provides an explanation for the superiority of in situ Fe(III) in phosphorus removal and highlights the importance of atomic-level structural differences between ex situ and in situ Fe(III) coprecipitates in water treatment.


Assuntos
Compostos Férricos , Purificação da Água , Compostos Férricos/química , Matéria Orgânica Dissolvida , Fosfatos , Oxirredução , Compostos Ferrosos/química , Fósforo , Purificação da Água/métodos
11.
Water Res ; 243: 120328, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459797

RESUMO

Iron coagulants have been used extensively in drinking water treatment. This typically produces substantial quantities of insoluble iron hydrolysis products which interact with natural and anthropogenic organic substances during the coagulation process. Previous studies have shown that the removal of low molecular weight (MW) organics is relatively poor by coagulation, which leads to their presence during disinfection, with the formation of halogenated byproducts, and in treated water supplies as potentially biodegradable material. Currently, there is little knowledge about the changes that occur in the nature of coagulant flocs as they age with time and how such changes affect interactions with organic matter, especially low MW organics. To improve this deficiency, this study has investigated the variation of aged flocs obtained from two commonly used iron salts and their impact on representative organic contaminants, natural organic matter (NOM) and tetracycline antibiotic (TC), in a real surface water. It was found that aging resulted in increasing crystallization of the flocs, which can play a beneficial role in activating persulfate oxidant to remove the representative organics. Furthermore, acidification was also found to further improve the removal of low MW natural organics and tetracycline. In addition, the results showed that the low MW fractions of NOM (<1 K Dalton) were substantially removed by the aging flocs. These results are in marked contrast to the poor removal of low MW organic substances by conventional coagulation, with or without added oxidants, and show that aged flocs have a high potential of reuse for re-coagulation and activation of oxidants to reduce low MW organics, and enhance drinking water quality.


Assuntos
Água Potável , Purificação da Água , Peso Molecular , Cristalização , Floculação , Purificação da Água/métodos , Ferro , Tetraciclinas
12.
Environ Sci Technol ; 57(30): 11096-11107, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467428

RESUMO

Denitrification-driven Fe(II) oxidation is an important microbial metabolism that connects iron and nitrogen cycling in the environment. The formation of Fe(III) minerals in the periplasmic space has a significant effect on microbial metabolism and electron transfer, but direct evidence of iron ions entering the periplasm and resulting in periplasmic mineral precipitation and electron conduction properties has yet to be conclusively determined. Here, we investigated the pathways and amounts of iron, with different valence states and morphologies, entering the periplasmic space of the denitrifier Pseudomonas sp. JM-7 (P. JM-7), and the possible effects on the electron transfer and the denitrifying ability. When consistently provided with Fe(II) ions (from siderite (FeCO3)), the dissolved Fe(II) ions entered the periplasmic space and were oxidized to Fe(III), leading to the formation of a 25 nm thick crystalline goethite crust, which functioned as a semiconductor, accelerating the transfer of electrons from the intracellular to the extracellular matrix. This consequently doubled the denitrification rate and increased the electron transport capacity by 4-30 times (0.015-0.04 µA). However, as the Fe(II) concentration further increased to above 4 mM, the Fe(II) ions tended to preferentially nucleate, oxidize, and crystallize on the outer surface of P. JM-7, leading to the formation of a densely crystallized goethite layer, which significantly slowed down the metabolism of P. JM-7. In contrast to the Fe(II) conditions, regardless of the initial concentration of Fe(III), it was challenging for Fe(III) ions to form goethite in the periplasmic space. This work has shed light on the likely effects of iron on environmental microorganisms, improved our understanding of globally significant iron and nitrogen geochemical cycles in water, and expanded our ability to study and control these important processes.


Assuntos
Compostos Férricos , Compostos de Ferro , Periplasma/metabolismo , Água , Desnitrificação , Compostos de Ferro/química , Compostos de Ferro/metabolismo , Minerais/química , Ferro/química , Oxirredução , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Nitrogênio/metabolismo
13.
J Hazard Mater ; 457: 131736, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295334

RESUMO

The biological slow filtration reactor (BSFR) process has been found to be moderately effective for the removal of refractory dissolved organic matter (DOM) in the treatment of reused water. In this study, bench scale experiments were conducted using a mixture of landscape water and concentrated landfill leachate as feed water, to compare a novel iron oxide (FexO)/FeNC modified activated carbon (FexO@AC) packed BSFR, with a conventional activated carbon packed BSFR (AC-BSFR), operated in parallel. The results showed that the FexO@AC packed BSFR had a refractory DOM removal rate of 90%, operated at a hydraulic retention time (HRT) of 10 h at room temperature for 30 weeks, while under the same conditions the removal by the AC-BSFR was only 70%. As a consequence, the treatment by the FexO@AC packed BSFR substantially reduced the formation potential of trihalomethanes, and to a less extent, haloacetic acids. The modification of FexO/FeNC media raised the conductivity and the oxygen reduction reaction (ORR) efficiency of the AC media to accelerate the anaerobic digestion by consuming the electrons that are generated by anaerobic digestion itself, which lead to the marked improvement in refractory DOM removal.

14.
Water Res ; 240: 120089, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37216786

RESUMO

Drinking water supply in rural areas remains a substantial challenge due to complex natural, technical and economic conditions. To provide safe and affordable drinking water to all, as targeted in the UN Sustainable Development Goals (2030 Agenda), low-cost, efficient water treatment processes suitable for rural areas need to be developed. In this study, a bubbleless aeration BAC (termed ABAC) process is proposed and evaluated, involving the incorporation of a hollow fiber membrane (HFM) assembly within a slow-rate BAC filter, to provide dissolved oxygen (DO) throughout the BAC filter and an increased DOM removal efficiency. The results showed that after a 210-day period of operation, the ABAC increased the DOC removal by 54%, and decreased the disinfection byproduct formation potential (DBPFP) by 41%, compared to a comparable BAC filter without aeration (termed NBAC). The elevated DO (> 4 mg/L) not only reduced secreted extracellular polymer, but also modified the microbial community with a stronger degradation ability. The HFM-based aeration showed comparable performance to 3 mg/L pre-ozonation, and the DOC removal efficiency was four times greater than that of a conventional coagulation process. The proposed ABAC treatment, with its various advantages (e.g., high stability, avoidance of chemicals, ease of operation and maintenance), is well-suited to be integrated as a prefabricated device, for decentralized drinking water systems in rural areas.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desinfecção/métodos , Oxigênio
15.
Sci Total Environ ; 876: 162695, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898544

RESUMO

This study investigated the influence of pH (4-10) on the treatment of water-extractable organic matter (WEOM), and the associated disinfection by-products (DBPs) formation potential (FP), during the pre-ozonation/nanofiltration treatment process. At alkaline pH (9-10), a rapid decline in water flux (> 50 %) and higher membrane rejection was observed, as a consequence of the increased electrostatic repulsion forces between the membrane surface and organic species. Parallel factor analysis (PARAFAC) modeling and size exclusion chromatography (SEC) provides detailed insights into the WEOM compositional behavior at different pH levels. Ozonation at higher pH significantly reduced the apparent molecular weight (MW) of WEOM in the 4000-7000 Da range by transforming the large MW (humic-like) substances into small hydrophilic fractions. Fluorescence components C1 (humic-like) and C2 (fulvic-like) exhibited a predominant increase/decrease in concentration for all pH conditions during pre-ozonation and nanofiltration treatment process, however, the C3 (protein-like) component was found highly associated with the reversible and irreversible membrane foulants. The ratio C1/C2 provided a strong correlation with the formation of total trihalomethanes (THMs) (R2 = 0.9277) and total haloacetic acids (HAAs) (R2 = 0.5796). The formation potential of THMs increased, and HAAs decreased, with the increase of feed water pH. Ozonation markedly reduced the formation of THMs by up to 40 % at higher pH levels, but increased the formation of brominated-HAAs by shifting the formation potential of DBPs towards brominated precursors.

16.
Chemosphere ; 324: 138297, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893869

RESUMO

The application of commercial membranes is limited by the secondary pollution such as the usage of toxic chemicals for the membrane preparation and the disposal of aged membranes. Therefore, the green and environmentally friendly membranes are extremely promising for the sustainable development of membrane filtration in water treatment. In this study, the comparison of wood membrane with the pore size of tens microns (µm) and polymer membrane with the pore size of 0.45 µm was made to study the heavy metals removal in drinking water treatment by gravity-driven membrane (GDM) filtration system, and there was an improvement in the removal of Fe, Cu and Mn by wood membrane. The sponge-like structure of fouling layer for wood membrane made the retention time of heavy metals prolonged in contrast to the cobweb-like structure of polymer membrane. The carboxylic group (-COOH) content of fouling layer for wood membrane was greater than that for polymer membrane. Additionally, the population abundance of heavy metal-capturing microbes on the surface of wood membrane was higher compared with polymer membrane. The wood membrane provides a promising route to producing facile, biodegradable and sustainable membrane as a green alternative to polymer membranes in heavy metal removal from drinking water.


Assuntos
Água Potável , Metais Pesados , Purificação da Água , Água Potável/análise , Polímeros/análise , Madeira/química , Metais Pesados/análise
17.
Environ Sci Technol ; 57(11): 4543-4555, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877961

RESUMO

The biodegradation in the middle and downstream of slow-rate biological activated carbon (BAC) is limited by insufficient dissolved oxygen (DO) concentrations. In this study, a bubbleless aerated BAC (termed ABAC) process was developed by installing a hollow fiber membrane (HFM) module within a BAC filter to continuously provide aeration throughout the BAC system. The BAC filter without an HFM was termed NBAC. The laboratory-scale ABAC and NBAC systems operated continuously for 426 days using secondary sewage effluent as an influent. The DO concentrations for NBAC and ABAC were 0.78 ± 0.27 and 4.31 ± 0.44 mg/L, respectively, with the latter providing the ABAC with greater electron acceptors for biodegradation and a microbial community with better biodegradation and metabolism capacity. The biofilms in ABAC secreted 47.3% less EPS and exhibited greater electron transfer capacity than those in NBAC, resulting in enhanced contaminant degradation efficiency and long-term stability. The extra organic matter removed by ABAC included refractory substances with a low elemental ratio of oxygen to carbon (O/C) and a high elemental ratio of hydrogen to carbon (H/C). The proposed ABAC filter provides a valuable, practical example of how to modify the BAC technology to shape the microbial community, and its activity, by optimizing the ambient atmosphere.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Filtração/métodos , Carvão Vegetal , Esgotos , Biodegradação Ambiental , Biofilmes , Purificação da Água/métodos , Poluentes Químicos da Água/análise
18.
Environ Pollut ; 322: 121182, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736570

RESUMO

Peroxydisulfate (PDS) based advanced oxidation processes (AOPs) are widely used for the degradation of pharmaceutical and personal care products (PPCP) in wastewater treatment. In this study, a Fe-doped g-C3N5 (Fe@g-C3N5) was synthesized as a photocatalyst for catalyzing the PDS-based AOPs to degrade tetracycline hydrochloride (TH) at pH 3 and Naproxen (NPX) at pH 7. The photocatalytic performance of Fe@g-C3N5 was 19% and 67% higher than g-C3N5 and g-C3N4 for degradation of TH at pH 3, respectively, while it was 21% and 35% at pH 7. The Fe:N ratio in Fe@g-C3N5, was calculated as 1:3.79, indicating that the doped Fe atom formed a FeN4 structure with an adjacent two-layer graphite structure of g-C3N5, which improved the charge separation capacity of g-C3N5 and act as a new reaction center that can efficiently combine and catalyze the PDS to radicals. Although the intrinsic photo-degradation performance is weak, the photocatalytic performance of Fe@g-C3N5 has great room for the improvement and application in wastewater treatment.


Assuntos
Grafite , Purificação da Água , Tetraciclina , Catálise , Preparações Farmacêuticas
19.
Sci Total Environ ; 856(Pt 2): 159201, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36202353

RESUMO

On the alpine areas such as Tianshan Mountains, snow and glaciers are widely distributed, which are sensitive to temperature changes. However, due to high altitude and scarcity of observed stations, the temperature changes and their causes in Tianshan are unclear. To address this issue, this study integrated Thiel-Sen trend test, Pearson correlation, and wavelet analysis methods to analyze the driving factors of temperature changes in Tianshan. We draw the following conclusions: (1) In the past 40 years, Tianshan warmed at a rate of 0.30 °C/decade. Seasonally, the temperature increased the most in spring and summer; spatially, the east Tianshan experienced the most warming. (2) Climate change has affected significant warming in the Tianshan. (3) The large-scale climate teleconnections found to be associated with warming in the Tianshan include North Pacific pattern, Atlantic Multidecadal Variability (AMV), North Atlantic Oscillation, and Western Hemisphere Warm Pool (WHWP). During the study period, the temperature changes lagged AMV and WHWP by 1.5 months, North Tropical Atlantic Index and Tropical Northern Atlantic Index by 3 months, and Arctic Oscillation by 4 months. This research contributes to understanding the response of dry mountains to global warming and atmospheric circulation changes.


Assuntos
Aquecimento Global , Camada de Gelo , Temperatura , Mudança Climática , Estações do Ano
20.
Environ Pollut ; 317: 120735, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464113

RESUMO

Iron-manganese-based adsorbent has been regarded as a promising candidate for arsenic purification from water, especially the inorganic As(III), due to its inherent advantage of low cost and large-scale producibility. However, the nanoparticle aggregation, metal leaching and insufficient removal efficiency remain the main challenges in the practical applications of the granular adsorbents. In this work, we develop a universal strategy for the fabrication of an active Fe(III) oxyhydroxide-Mn(IV) oxide/3D graphene oxide (GO) gel composite via a simple hydrothermal reaction. The successful immobilization of Fe-Mn oxyhydroxide/oxides on the interconnected GO gels was intuitively confirmed by the transmission electron microscopy and atomic force microscopy. The combinative characterizations of the X-ray absorption near edge structure and X-ray photoelectron spectroscopy clearly reveal the electron transfer from Fe atoms to Mn atoms. The optimized Fe-Mn/GO composites possess the superior performance with the removal efficiency of over 90% for As(III) at pH 7.0 and ∼97% for As(V) at pH 5.0 and the As(III, V) levels (100 µg l-1) are reduced to below the WHO guideline of 10 µg l-1. The sorption isotherm and kinetic experiments on the As removal were also carried out. The post characterizations are employed to better unveil the oxidation-adsorption mechanism. Notably, the application of Fe-Mn/GO composites in the treatment of As-simulated natural water demonstrated a stable and continuous operation for over 20 days and an effluent concentration of arsenic as low as the 10 µg l-1 in a specially designed flow reactor.


Assuntos
Arsênio , Grafite , Poluentes Químicos da Água , Purificação da Água , Arsênio/química , Óxidos/química , Compostos de Manganês/química , Compostos Férricos/química , Adsorção , Hidrogéis , Oxirredução , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...